124 research outputs found

    An efficient method to include equality constraints in branch current distribution system state estimation

    Get PDF
    Distribution system state estimation is a fundamental tool for the management and control functions envisaged for future distribution grids. The design of accurate and efficient algorithms is essential to provide estimates compliant with the needed accuracy requirements and to allow the real-time operation of the different applications. To achieve such requirements, peculiarities of the distribution systems have to be duly taken into account. Branch current-based estimators are an efficient solution for performing state estimation in radial or weakly meshed networks. In this paper, a simple technique, which exploits the particular formulation of the branch current estimators, is proposed to deal with zero injection and mesh constraints. Tests performed on an unbalanced IEEE 123-bus network show the capability of the proposed method to further improve efficiency performance of branch current estimators

    Statistical Behavior of PMU Measurement Errors: An Experimental Characterization

    Get PDF
    Different power system applications based on synchrophasors measured in different nodes of the electric grid require information about the statistical distribution of the errors introduced by the phasor measurement units (PMUs). The performance of these applications can be significantly affected by possible incorrect assumptions. The Gaussian distribution has been historically assumed in most of the approaches, but some more recent studies suggest the possibility of considering different distributions for more accurate modeling of the actual situation. In this article, proper statistical tools applied to the results achieved through a high-performance experimental test system are proposed to assess the statistical distribution of PMU errors under controlled steady-state conditions, thus providing a basis for defining suitable models to be used in specific applications

    Line Impedance Estimation Based on Synchrophasor Measurements for Power Distribution Systems

    Get PDF
    Effective monitoring and management applications on modern distribution networks (DNs) require a sound network model and the knowledge of line parameters. Network line impedances are used, among other things, for state estimation and protection relay setting. Phasor measurement units (PMUs) give synchronized voltage and current phasor measurements, referred to a common time reference (coordinated universal time). All synchrophasor measurements can thus be temporally aligned and coordinated across the network. This feature, along with high accuracy and reporting rates, could make PMUs useful for the evaluation of network parameters. However, instrument transformer behavior strongly affects the parameter estimation accuracy. In this paper, a new PMU-based iterative line parameter estimation algorithm for DNs, which includes in the estimation model systematic measurement errors, is presented. This method exploits the simultaneous measurements given by PMUs on different nodes and branches of the network. A complete analysis of uncertainty sources is also performed, allowing the evaluation of estimation uncertainty. Issues related to operating conditions, topology, and measurement uncertainty are thoroughly discussed and referenced to a realistic model of a DN to show how a full network estimator is possible

    Bayesian Approach for Distribution System State Estimation With Non-Gaussian Uncertainty Models

    Get PDF
    To deal with the increasing complexity of distribution networks that are experiencing important changes, due to the widespread installation of distributed generation and the expected penetration of new energy resources, modern control applications must rely on an accurate picture of the grid status, given by the distribution system state estimation (DSSE). The DSSE is required to integrate all the available information on loads and generators power exchanges (pseudomeasurements) with the real-time measurements available from the field. In most cases, the statistical behavior of the measured and pseudomeasured quantities cannot be approximated by a Gaussian distribution. For this reason, it is necessary to design estimators that are able to use measurements and forecast data on power flows that can show a non-Gaussian behavior. In this paper, a DSSE algorithm based on Bayes's rule, conceived to perfectly match the uncertainty description of the available input information, is presented. The method is able to correctly handle the measurement uncertainty of conventional and synchronized measurements and to include possible correlation existing between the pseudomeasurements. Its applicability to medium voltage distribution networks and its advantages, in terms of accuracy of both estimated quantities and uncertainty intervals, are demonstrated

    Low-cost implementation and characterization of an active phasor data concentrator

    Get PDF
    The main components of an advanced measurement system based on synchrophasor technology for the monitoring of power systems are the phasor measurement unit (PMU), which represents the ‘sensor’, and the phasor data concentrator (PDC), which collects the data forwarded by PMUs installed on the field. For the purpose of extending the benefit of synchrophasor technology from transmission grids to distribution networks, different projects are seeking to use low-cost platforms to design devices with PMU functionalities. In this perspective, in order to achieve a complete synchrophasor-based measurement architecture based on low-cost technologies, this work presents a PDC design based on a low-cost platform. Despite the simplicity of the considered hardware, advanced PDC functionalities and innovative control logics are implemented in the prototype. The proposed device is characterised by several experimental tests aimed at assessing its performance in terms of both time synchronisation and capability of managing several PMU data streams. The feasibility of some additional functionalities and control logics is evaluated in the context of different possible scenarios

    PMU’s behavior with flicker-generating voltage fluctuations: an experimental analysis

    Get PDF
    Phasor measurement units (PMUs), which are the key components of a synchrophasor-based wide area monitoring system (WAMS), were historically conceived for transmission networks. The current trend to extend the benefits of the synchrophasor technology to distribution networks requires the PMU to also provide trustworthy information in the presence of signals that can occur in a typical distribution grid, including the presence of severe power quality (PQ) issues. In this framework, this paper experimentally investigates the performance of PMUs in the presence of one of the most important PQ phenomena, namely the presence of voltage fluctuations that generate the disturbance commonly known as flicker. The experimental tests are based on an ad-hoc high-accuracy measurement setup, where the devices under test are considered as “black boxes” to be characterized in the presence of the relevant signals. Two simple indices are introduced for the comparison among the different tested PMUs. The results of the investigation highlight possible critical situations in the interpretation of the measured values and provide a support for both the design of a new generation of PMUs and the possible development of an updated synchrophasor standard targeted to distribution systems

    Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: The Pros-IT CNR study

    Get PDF

    Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: The Pros-IT CNR study

    Get PDF
    Background: The National Research Council (CNR) prostate cancer monitoring project in Italy (Pros-IT CNR) is an observational, prospective, ongoing, multicentre study aiming to monitor a sample of Italian males diagnosed as new cases of prostate cancer. The present study aims to present data on the quality of life at time prostate cancer is diagnosed. Methods: One thousand seven hundred five patients were enrolled. Quality of life is evaluated at the time cancer was diagnosed and at subsequent assessments via the Italian version of the University of California Los Angeles-Prostate Cancer Index (UCLA-PCI) and the Short Form Health Survey (SF-12). Results: At diagnosis, lower scores on the physical component of the SF-12 were associated to older ages, obesity and the presence of 3+ moderate/severe comorbidities. Lower scores on the mental component were associated to younger ages, the presence of 3+ moderate/severe comorbidities and a T-score higher than one. Urinary and bowel functions according to UCLA-PCI were generally good. Almost 5% of the sample reported using at least one safety pad daily to control urinary loss; less than 3% reported moderate/severe problems attributable to bowel functions, and sexual function was a moderate/severe problem for 26.7%. Diabetes, 3+ moderate/severe comorbidities, T2 or T3-T4 categories and a Gleason score of eight or more were significantly associated with lower sexual function scores at diagnosis. Conclusions: Data collected by the Pros-IT CNR study have clarified the baseline status of newly diagnosed prostate cancer patients. A comprehensive assessment of quality of life will allow to objectively evaluate outcomes of different profile of care

    A digital compensation method for improving current transformer accuracy

    No full text
    This paper deals with error compensation in current transformers. Usually the manufacturer tries to limit these errors by stating a transformer nominal ratio slightly different from theturns ratio. On the other hand techniques have been developed that allow software current compensation. The proposed method requires acquisition of the instantaneous secondary current and its adjustment with magnetizing current, taking into account hysteresis effects. To do this, a preliminary procedure is performed for core and transformer parameter identification. The compensation method has been tested on a variety of instrument transformers, with sinusoidal primary current. Test results show, in all examined cases, an improvement in primary current reproduction accuracy, compared with that achieved using CTs nominal ratio, even for core partial saturation. A further development of the compensation technique is in progress, with a view to eliminating some restrictive hypothesis introduced in the present study
    corecore